- Privacy Policy
Home » Experimental Design – Types, Methods, Guide
Experimental Design – Types, Methods, Guide
Table of Contents
Experimental design is a structured approach used to conduct scientific experiments. It enables researchers to explore cause-and-effect relationships by controlling variables and testing hypotheses. This guide explores the types of experimental designs, common methods, and best practices for planning and conducting experiments.
Experimental Design
Experimental design refers to the process of planning a study to test a hypothesis, where variables are manipulated to observe their effects on outcomes. By carefully controlling conditions, researchers can determine whether specific factors cause changes in a dependent variable.
Key Characteristics of Experimental Design :
- Manipulation of Variables : The researcher intentionally changes one or more independent variables.
- Control of Extraneous Factors : Other variables are kept constant to avoid interference.
- Randomization : Subjects are often randomly assigned to groups to reduce bias.
- Replication : Repeating the experiment or having multiple subjects helps verify results.
Purpose of Experimental Design
The primary purpose of experimental design is to establish causal relationships by controlling for extraneous factors and reducing bias. Experimental designs help:
- Test Hypotheses : Determine if there is a significant effect of independent variables on dependent variables.
- Control Confounding Variables : Minimize the impact of variables that could distort results.
- Generate Reproducible Results : Provide a structured approach that allows other researchers to replicate findings.
Types of Experimental Designs
Experimental designs can vary based on the number of variables, the assignment of participants, and the purpose of the experiment. Here are some common types:
1. Pre-Experimental Designs
These designs are exploratory and lack random assignment, often used when strict control is not feasible. They provide initial insights but are less rigorous in establishing causality.
- Example : A training program is provided, and participants’ knowledge is tested afterward, without a pretest.
- Example : A group is tested on reading skills, receives instruction, and is tested again to measure improvement.
2. True Experimental Designs
True experiments involve random assignment of participants to control or experimental groups, providing high levels of control over variables.
- Example : A new drug’s efficacy is tested with patients randomly assigned to receive the drug or a placebo.
- Example : Two groups are observed after one group receives a treatment, and the other receives no intervention.
3. Quasi-Experimental Designs
Quasi-experiments lack random assignment but still aim to determine causality by comparing groups or time periods. They are often used when randomization isn’t possible, such as in natural or field experiments.
- Example : Schools receive different curriculums, and students’ test scores are compared before and after implementation.
- Example : Traffic accident rates are recorded for a city before and after a new speed limit is enforced.
4. Factorial Designs
Factorial designs test the effects of multiple independent variables simultaneously. This design is useful for studying the interactions between variables.
- Example : Studying how caffeine (variable 1) and sleep deprivation (variable 2) affect memory performance.
- Example : An experiment studying the impact of age, gender, and education level on technology usage.
5. Repeated Measures Design
In repeated measures designs, the same participants are exposed to different conditions or treatments. This design is valuable for studying changes within subjects over time.
- Example : Measuring reaction time in participants before, during, and after caffeine consumption.
- Example : Testing two medications, with each participant receiving both but in a different sequence.
Methods for Implementing Experimental Designs
- Purpose : Ensures each participant has an equal chance of being assigned to any group, reducing selection bias.
- Method : Use random number generators or assignment software to allocate participants randomly.
- Purpose : Prevents participants or researchers from knowing which group (experimental or control) participants belong to, reducing bias.
- Method : Implement single-blind (participants unaware) or double-blind (both participants and researchers unaware) procedures.
- Purpose : Provides a baseline for comparison, showing what would happen without the intervention.
- Method : Include a group that does not receive the treatment but otherwise undergoes the same conditions.
- Purpose : Controls for order effects in repeated measures designs by varying the order of treatments.
- Method : Assign different sequences to participants, ensuring that each condition appears equally across orders.
- Purpose : Ensures reliability by repeating the experiment or including multiple participants within groups.
- Method : Increase sample size or repeat studies with different samples or in different settings.
Steps to Conduct an Experimental Design
- Clearly state what you intend to discover or prove through the experiment. A strong hypothesis guides the experiment’s design and variable selection.
- Independent Variable (IV) : The factor manipulated by the researcher (e.g., amount of sleep).
- Dependent Variable (DV) : The outcome measured (e.g., reaction time).
- Control Variables : Factors kept constant to prevent interference with results (e.g., time of day for testing).
- Choose a design type that aligns with your research question, hypothesis, and available resources. For example, an RCT for a medical study or a factorial design for complex interactions.
- Randomly assign participants to experimental or control groups. Ensure control groups are similar to experimental groups in all respects except for the treatment received.
- Randomize the assignment and, if possible, apply blinding to minimize potential bias.
- Follow a consistent procedure for each group, collecting data systematically. Record observations and manage any unexpected events or variables that may arise.
- Use appropriate statistical methods to test for significant differences between groups, such as t-tests, ANOVA, or regression analysis.
- Determine whether the results support your hypothesis and analyze any trends, patterns, or unexpected findings. Discuss possible limitations and implications of your results.
Examples of Experimental Design in Research
- Medicine : Testing a new drug’s effectiveness through a randomized controlled trial, where one group receives the drug and another receives a placebo.
- Psychology : Studying the effect of sleep deprivation on memory using a within-subject design, where participants are tested with different sleep conditions.
- Education : Comparing teaching methods in a quasi-experimental design by measuring students’ performance before and after implementing a new curriculum.
- Marketing : Using a factorial design to examine the effects of advertisement type and frequency on consumer purchase behavior.
- Environmental Science : Testing the impact of a pollution reduction policy through a time series design, recording pollution levels before and after implementation.
Experimental design is fundamental to conducting rigorous and reliable research, offering a systematic approach to exploring causal relationships. With various types of designs and methods, researchers can choose the most appropriate setup to answer their research questions effectively. By applying best practices, controlling variables, and selecting suitable statistical methods, experimental design supports meaningful insights across scientific, medical, and social research fields.
- Campbell, D. T., & Stanley, J. C. (1963). Experimental and Quasi-Experimental Designs for Research . Houghton Mifflin Company.
- Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Experimental and Quasi-Experimental Designs for Generalized Causal Inference . Houghton Mifflin.
- Fisher, R. A. (1935). The Design of Experiments . Oliver and Boyd.
- Field, A. (2013). Discovering Statistics Using IBM SPSS Statistics . Sage Publications.
- Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences . Routledge.
About the author
Muhammad Hassan
Researcher, Academic Writer, Web developer
You may also like
Survey Research – Types, Methods, Examples
Research Methods – Types, Examples and Guide
Transformative Design – Methods, Types, Guide
Triangulation in Research – Types, Methods and...
Exploratory Research – Types, Methods and...
Qualitative Research Methods
Experimental Design: Types, Examples & Methods
Saul McLeod, PhD
Editor-in-Chief for Simply Psychology
BSc (Hons) Psychology, MRes, PhD, University of Manchester
Saul McLeod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.
Learn about our Editorial Process
Olivia Guy-Evans, MSc
Associate Editor for Simply Psychology
BSc (Hons) Psychology, MSc Psychology of Education
Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.
On This Page:
Experimental design refers to how participants are allocated to different groups in an experiment. Types of design include repeated measures, independent groups, and matched pairs designs.
Probably the most common way to design an experiment in psychology is to divide the participants into two groups, the experimental group and the control group, and then introduce a change to the experimental group, not the control group.
The researcher must decide how he/she will allocate their sample to the different experimental groups. For example, if there are 10 participants, will all 10 participants participate in both groups (e.g., repeated measures), or will the participants be split in half and take part in only one group each?
Three types of experimental designs are commonly used:
1. Independent Measures
Independent measures design, also known as between-groups , is an experimental design where different participants are used in each condition of the independent variable. This means that each condition of the experiment includes a different group of participants.
This should be done by random allocation, ensuring that each participant has an equal chance of being assigned to one group.
Independent measures involve using two separate groups of participants, one in each condition. For example:
- Con : More people are needed than with the repeated measures design (i.e., more time-consuming).
- Pro : Avoids order effects (such as practice or fatigue) as people participate in one condition only. If a person is involved in several conditions, they may become bored, tired, and fed up by the time they come to the second condition or become wise to the requirements of the experiment!
- Con : Differences between participants in the groups may affect results, for example, variations in age, gender, or social background. These differences are known as participant variables (i.e., a type of extraneous variable ).
- Control : After the participants have been recruited, they should be randomly assigned to their groups. This should ensure the groups are similar, on average (reducing participant variables).
2. Repeated Measures Design
Repeated Measures design is an experimental design where the same participants participate in each independent variable condition. This means that each experiment condition includes the same group of participants.
Repeated Measures design is also known as within-groups or within-subjects design .
- Pro : As the same participants are used in each condition, participant variables (i.e., individual differences) are reduced.
- Con : There may be order effects. Order effects refer to the order of the conditions affecting the participants’ behavior. Performance in the second condition may be better because the participants know what to do (i.e., practice effect). Or their performance might be worse in the second condition because they are tired (i.e., fatigue effect). This limitation can be controlled using counterbalancing.
- Pro : Fewer people are needed as they participate in all conditions (i.e., saves time).
- Control : To combat order effects, the researcher counter-balances the order of the conditions for the participants. Alternating the order in which participants perform in different conditions of an experiment.
Counterbalancing
Suppose we used a repeated measures design in which all of the participants first learned words in “loud noise” and then learned them in “no noise.”
We expect the participants to learn better in “no noise” because of order effects, such as practice. However, a researcher can control for order effects using counterbalancing.
The sample would be split into two groups: experimental (A) and control (B). For example, group 1 does ‘A’ then ‘B,’ and group 2 does ‘B’ then ‘A.’ This is to eliminate order effects.
Although order effects occur for each participant, they balance each other out in the results because they occur equally in both groups.
3. Matched Pairs Design
A matched pairs design is an experimental design where pairs of participants are matched in terms of key variables, such as age or socioeconomic status. One member of each pair is then placed into the experimental group and the other member into the control group .
One member of each matched pair must be randomly assigned to the experimental group and the other to the control group.
- Con : If one participant drops out, you lose 2 PPs’ data.
- Pro : Reduces participant variables because the researcher has tried to pair up the participants so that each condition has people with similar abilities and characteristics.
- Con : Very time-consuming trying to find closely matched pairs.
- Pro : It avoids order effects, so counterbalancing is not necessary.
- Con : Impossible to match people exactly unless they are identical twins!
- Control : Members of each pair should be randomly assigned to conditions. However, this does not solve all these problems.
Experimental design refers to how participants are allocated to an experiment’s different conditions (or IV levels). There are three types:
1. Independent measures / between-groups : Different participants are used in each condition of the independent variable.
2. Repeated measures /within groups : The same participants take part in each condition of the independent variable.
3. Matched pairs : Each condition uses different participants, but they are matched in terms of important characteristics, e.g., gender, age, intelligence, etc.
Learning Check
Read about each of the experiments below. For each experiment, identify (1) which experimental design was used; and (2) why the researcher might have used that design.
1 . To compare the effectiveness of two different types of therapy for depression, depressed patients were assigned to receive either cognitive therapy or behavior therapy for a 12-week period.
The researchers attempted to ensure that the patients in the two groups had similar severity of depressed symptoms by administering a standardized test of depression to each participant, then pairing them according to the severity of their symptoms.
2 . To assess the difference in reading comprehension between 7 and 9-year-olds, a researcher recruited each group from a local primary school. They were given the same passage of text to read and then asked a series of questions to assess their understanding.
3 . To assess the effectiveness of two different ways of teaching reading, a group of 5-year-olds was recruited from a primary school. Their level of reading ability was assessed, and then they were taught using scheme one for 20 weeks.
At the end of this period, their reading was reassessed, and a reading improvement score was calculated. They were then taught using scheme two for a further 20 weeks, and another reading improvement score for this period was calculated. The reading improvement scores for each child were then compared.
4 . To assess the effect of the organization on recall, a researcher randomly assigned student volunteers to two conditions.
Condition one attempted to recall a list of words that were organized into meaningful categories; condition two attempted to recall the same words, randomly grouped on the page.
Experiment Terminology
Ecological validity.
The degree to which an investigation represents real-life experiences.
Experimenter effects
These are the ways that the experimenter can accidentally influence the participant through their appearance or behavior.
Demand characteristics
The clues in an experiment lead the participants to think they know what the researcher is looking for (e.g., the experimenter’s body language).
Independent variable (IV)
The variable the experimenter manipulates (i.e., changes) is assumed to have a direct effect on the dependent variable.
Dependent variable (DV)
Variable the experimenter measures. This is the outcome (i.e., the result) of a study.
Extraneous variables (EV)
All variables which are not independent variables but could affect the results (DV) of the experiment. Extraneous variables should be controlled where possible.
Confounding variables
Variable(s) that have affected the results (DV), apart from the IV. A confounding variable could be an extraneous variable that has not been controlled.
Random Allocation
Randomly allocating participants to independent variable conditions means that all participants should have an equal chance of taking part in each condition.
The principle of random allocation is to avoid bias in how the experiment is carried out and limit the effects of participant variables.
Order effects
Changes in participants’ performance due to their repeating the same or similar test more than once. Examples of order effects include:
(i) practice effect: an improvement in performance on a task due to repetition, for example, because of familiarity with the task;
(ii) fatigue effect: a decrease in performance of a task due to repetition, for example, because of boredom or tiredness.
- To save this word, you'll need to log in. Log In
experimental design
Definition of experimental design
The ultimate dictionary awaits.
Expand your vocabulary and dive deeper into language with Merriam-Webster Unabridged .
- Expanded definitions
- Detailed etymologies
- Advanced search tools
- All ad-free
Discover what makes Merriam-Webster Unabridged the essential choice for true word lovers.
Articles Related to experimental design
This is the Difference Between a...
This is the Difference Between a Hypothesis and a Theory
In scientific reasoning, they're two completely different things
Dictionary Entries Near experimental design
experimental
experimental engineer
Cite this Entry
“Experimental design.” Merriam-Webster.com Dictionary , Merriam-Webster, https://www.merriam-webster.com/dictionary/experimental%20design. Accessed 23 Dec. 2024.
Subscribe to America's largest dictionary and get thousands more definitions and advanced search—ad free!
Can you solve 4 words at once?
Word of the day, delectation.
See Definitions and Examples »
Get Word of the Day daily email!
Popular in Grammar & Usage
Point of view: it's personal, plural and possessive names: a guide, what's the difference between 'fascism' and 'socialism', more commonly misspelled words, words you always have to look up, popular in wordplay, 8 words with fascinating histories, 8 words for lesser-known musical instruments, birds say the darndest things, 10 words from taylor swift songs (merriam's version), 10 scrabble words without any vowels, games & quizzes.
- Number System and Arithmetic
- Probability
- Mensuration
- Trigonometry
- Mathematics
Experimental Design
Experimental design is reviewed as an important part of the research methodology with an implication for the confirmation and reliability of the scientific studies. This is the scientific, logical and planned way of arranging tests and how they may be conducted so that hypotheses can be tested with the possibility of arriving at some conclusions. It refers to a procedure followed in order to control variables and conditions that may influence the outcome of a given study to reduce bias as well as improve the effectiveness of data collection and subsequently the quality of the results.
What is Experimental Design?
Experimental design simply refers to the strategy that is employed in conducting experiments to test hypotheses and arrive at valid conclusions. The process comprises firstly, the formulation of research questions, variable selection, specifications of the conditions for the experiment, and a protocol for data collection and analysis. The importance of experimental design can be seen through its potential to prevent bias, reduce variability, and increase the precision of results in an attempt to achieve high internal validity of studies. By using experimental design, the researchers can generate valid results which can be generalized in other settings which helps the advancement of knowledge in various fields.
Definition of Experimental Design
Experimental design is a systematic method of implementing experiments in which one can manipulate variables in a structured way in order to analyze hypotheses and draw outcomes based on empirical evidence.
Types of Experimental Design
Experimental design encompasses various approaches to conducting research studies, each tailored to address specific research questions and objectives. The primary types of experimental design include:
Pre-experimental Research Design
- True Experimental Research Design
- Quasi-Experimental Research Design
Statistical Experimental Design
A preliminary approach where groups are observed after implementing cause and effect factors to determine the need for further investigation. It is often employed when limited information is available or when researchers seek to gain initial insights into a topic. Pre-experimental designs lack random assignment and control groups, making it difficult to establish causal relationships.
Classifications:
- One-Shot Case Study
- One-Group Pretest-Posttest Design
- Static-Group Comparison
True-experimental Research Design
The true-experimental research design involves the random assignment of participants to experimental and control groups to establish cause-and-effect relationships between variables. It is used to determine the impact of an intervention or treatment on the outcome of interest. True-experimental designs satisfy the following factors:
Factors to Satisfy:
- Random Assignment
- Control Group
- Experimental Group
- Pretest-Posttest Measures
Quasi-Experimental Design
A quasi-experimental design is an alternative to the true-experimental design when the random assignment of participants to the groups is not possible or desirable. It allows for comparisons between groups without random assignment, providing valuable insights into causal relationships in real-world settings. Quasi-experimental designs are used typically in conditions wherein the random assignment of the participants cannot be done or it may not be ethical, for example, an educational or community-based intervention.
Statistical experimental design, also known as design of experiments (DOE), is a branch of statistics that focuses on planning, conducting, analyzing, and interpreting controlled tests to evaluate the factors that may influence a particular outcome or process. The primary goal is to determine cause-and-effect relationships and to identify the optimal conditions for achieving desired results. The detailed is discussed below:
Design of Experiments: Goals & Settings
The goals and settings for design of experiments are as follows:
- Identifying Research Objectives: Clearly defining the goals and hypotheses of the experiment is crucial for designing an effective study.
- Selecting Appropriate Variables: Determining the independent, dependent, and control variables based on the research question.
- Considering Experimental Conditions: Identifying the settings and constraints under which the experiment will be conducted.
- Ensuring Validity and Reliability: Designing the experiment to minimize threats to internal and external validity.
Developing an Experimental Design
Developing an experimental design involves a systematic process of planning and structuring the study to achieve the research objectives. Here are the key steps:
- Define the research question and hypotheses
- Identify the independent and dependent variables
- Determine the experimental conditions and treatments
- Select the appropriate experimental design (e.g., completely randomized, randomized block, factorial)
- Determine the sample size and sampling method
- Establish protocols for data collection and analysis
- Conduct a pilot study to test the feasibility and refine the design
- Implement the experiment and collect data
- Analyze the data using appropriate statistical methods
- Interpret the results and draw conclusions
Preplanning, Defining, and Operationalizing for Design of Experiments
Preplanning, defining, and operationalizing are crucial steps in the design of experiments. Preplanning involves identifying the research objectives, selecting variables, and determining the experimental conditions. Defining refers to clearly stating the research question, hypotheses, and operational definitions of the variables. Operationalizing involves translating the conceptual definitions into measurable terms and establishing protocols for data collection.
For example, in a study investigating the effect of different fertilizers on plant growth, the researcher would preplan by selecting the independent variable (fertilizer type), dependent variable (plant height), and control variables (soil type, sunlight exposure). The research question would be defined as "Does the type of fertilizer affect the height of plants?" The operational definitions would include specific methods for measuring plant height and applying the fertilizers.
Randomized Block Design
Randomized block design is an experimental approach where subjects or units are grouped into blocks based on a known source of variability, such as location, time, or individual characteristics. The treatments are then randomly assigned to the units within each block. This design helps control for confounding factors, reduce experimental error, and increase the precision of estimates. By blocking, researchers can account for systematic differences between groups and focus on the effects of the treatments being studied
Consider a study investigating the effectiveness of two teaching methods (A and B) on student performance. The steps involved in a randomized block design would include:
- Identifying blocks based on student ability levels.
- Randomly assigning students within each block to either method A or B.
- Conducting the teaching interventions.
- Analyzing the results within each block to account for variability.
Completely Randomized Design
A completely randomized design is a straightforward experimental approach where treatments are randomly assigned to experimental units without any specific blocking. This design is suitable when there are no known sources of variability that need to be controlled for. In a completely randomized design, all units have an equal chance of receiving any treatment, and the treatments are distributed independently. This design is simple to implement and analyze but may be less efficient than a randomized block design when there are known sources of variability
Between-Subjects vs Within-Subjects Experimental Designs
Here is a detailed comparison among Between-Subject and Within-Subject is tabulated below:
Design of Experiments Examples
The examples of design experiments are as follows:
Between-Subjects Design Example:
In a study comparing the effectiveness of two teaching methods on student performance, one group of students (Group A) is taught using Method 1, while another group (Group B) is taught using Method 2. The performance of both groups is then compared to determine the impact of the teaching methods on student outcomes.
Within-Subjects Design Example:
In a study assessing the effects of different exercise routines on fitness levels, each participant undergoes all exercise routines over a period of time. Participants' fitness levels are measured before and after each routine to evaluate the impact of the exercises on their fitness levels.
Application of Experimental Design
The applications of Experimental design are as follows:
- Product Testing: Experimental design is used to evaluate the effectiveness of new products or interventions.
- Medical Research: It helps in testing the efficacy of treatments and interventions in controlled settings.
- Agricultural Studies: Experimental design is crucial in testing new farming techniques or crop varieties.
- Psychological Experiments: It is employed to study human behavior and cognitive processes.
- Quality Control: Experimental design aids in optimizing processes and improving product quality.
In scientific research, experimental design is a crucial procedure that helps to outline an effective strategy for carrying out a meaningful experiment and making correct conclusions. This means that through proper control and coordination in conducting experiments, increased reliability and validity can be attained, and expansion of knowledge can take place generally across various fields. Using proper experimental design principles is crucial in ensuring that the experimental outcomes are impactful and valid.
Also, Check
- What is Hypothesis
- Null Hypothesis
- Real-life Applications of Hypothesis Testing
FAQs on Experimental Design
What is experimental design in math.
Experimental design refers to the aspect of planning experiments to gather data, decide the way in which to control the variable and draw sensible conclusions from the outcomes.
What are the advantages of the experimental method in math?
The advantages of the experimental method include control of variables, establishment of cause-and-effector relationship and use of statistical tools for proper data analysis.
What is the main purpose of experimental design?
The goal of experimental design is to describe the nature of variables and examine how changes in one or more variables impact the outcome of the experiment.
What are the limitations of experimental design?
Limitations include potential biases, the complexity of controlling all variables, ethical considerations, and the fact that some experiments can be costly or impractical.
What are the statistical tools used in experimental design?
Statistical tools utilized include ANOVA, regression analysis, t-tests, chi-square tests and factorial designs to conduct scientific research.
Similar Reads
- jQuery getJSON() Method In this article, we will learn about the getJSON() method in jQuery, along with understanding their implementation through the example. jQuery is an open-source JavaScript library that simplifies the interactions between an HTML/CSS document, It is widely famous for its philosophy of “Write less, do 2 min read
- How to open JSON file ? In this article, we will open the JSON file using JavaScript. JSON stands for JavaScript Object Notation. It is basically a format for structuring data. The JSON format is a text-based format to represent the data in form of a JavaScript object. Approach: Create a JSON file, add data in that JSON f 2 min read
- How to open json file ? A JSON (JavaScript Object Notation) file is a standard format used to store and exchange data. Initially, JSON was primarily used for data transfer between web applications and servers, but its usage has expanded significantly. Today, JSON files are used for various purposes, including data backups 3 min read
- JSON Schema JSON Schema is a content specification language used for validating the structure of a JSON data.It helps you specify the objects and what values are valid inside the object's properties. JSON schema is useful in offering clear, human-readable, and machine-readable documentation. Structure of a JSON 2 min read
- What is JSON text ? The Javascript Object Notation(JSON) is used to transfer or exchange information on the internet. JSON is just the plain text written as a javascript object. There exist several key-value pairs which represent some useful information. The important thing to keep in mind is, although the JavaScript c 3 min read
- ES6 Merge Objects In this article, we are going to learn how to merge two objects in JavaScript. We can merge two JavaScript Objects in ES6 by using the two popular methods. The methods are listed below: Object.assign() methodObject spread syntax method Using Object.assign() method: Using this method, we can merge tw 3 min read
- How To Escape Strings in JSON? JSON (JavaScript Object Notation) is a popular data format that is widely used in APIs, configuration files, and data storage. While JSON is straightforward, handling special characters within strings requires some extra care. Certain characters must be escaped to be valid within a JSON string. Tabl 3 min read
- How to Handle Newlines in JSON? Handling newlines in JSON is essential for maintaining data integrity when dealing with multiline text. JSON, being a text-based format, requires special consideration for newlines to ensure that text appears as intended across different platforms. Proper handling of newlines ensures consistent and 2 min read
- Node.js querystring.encode() Function The querystring.encode() method is used to produce a URL query string from the given object that contains the key-value pairs. The method iterates through the object’s own properties to generate the query string. It can serialize a single or an array of strings, numbers, and boolean. Any other types 2 min read
- Rename Object Key in JavaScript In JavaScript, objects are used to store the collection of various data. It is a collection of properties. A property is a "key: value" pair where Keys are known as 'property name' and are used to identify values. Since JavaScript doesn't provide an inbuilt function to rename an object key. So we wi 4 min read
- String in JavaScript String is used to representing the sequence of characters. They are made up of a list of characters, which is essentially just an "array of characters". It can hold the data and manipulate the data which can be represented in the text form. We can perform different operations on strings like checkin 3 min read
- Add Nested JSON Object in Postman Postman is a helpful tool for testing APIs and working with JSON. It lets you add nested objects to existing JSON. JSON is a simple data format for both humans and machines. Postman also lets developers send requests and view responses, which is really useful for working with JSON data. These are th 2 min read
- Read, Write and Parse JSON using Python JSON is a lightweight data format for data interchange that can be easily read and written by humans, and easily parsed and generated by machines. It is a complete language-independent text format. To work with JSON data, Python has a built-in package called JSON. Example of JSON String s = '{"id":0 4 min read
- Deserializing a JSON into a JavaScript object Deserializing a JSON into a JavaScript object refers to the process of converting a JSON (JavaScript Object Notation) formatted string into a native JavaScript object. This allows developers to work with the data in JavaScript by accessing its properties and methods directly. JavaScript Object Notat 2 min read
- JavaScript JSON parse() Method The JSON.parse() method is used to convert a JSON string into a JavaScript object. It’s become important when dealing with data in JSON format, interacting with APIs, or storing data in the browser. It converts a JSON string into a JavaScript object.Throws a SyntaxError if the input string is not va 4 min read
- How to Receive JSON Data at Server Side ? JavaScript Object Notation (JSON) is a data transferring format used to send data to or from the server. It is commonly utilized in API integration due to its benefits and simplicity. In this example, we will utilize XML HttpRequest to deliver data to the server. Frontend: We will use a simple form 2 min read
- How to Convert String to Variable Name in JavaScript? In JavaScript, if we consider the variable names as string values, it is difficult to transform a variable’s name into a string. However, this problem has been handled in many ways for example, static properties of objects, eval(), and modern ways such as Map can be used to achieve the essential eff 3 min read
- How to Pass Object as Parameter in JavaScript ? We'll see how to Pass an object as a Parameter in JavaScript. We can pass objects as parameters to functions just like we do with any other data type. passing objects as parameters to functions allows us to manipulate their properties within the function. These are the following approaches: Table of 3 min read
- JavaScript JSON Parser JSON (JavaScript Object Notation) is a popular lightweight data exchange format for sending data between a server and a client, or across various systems. JSON data is parsed and interpreted using a software component or library called a JSON parser. Through the JSON parsing process, a JSON string i 3 min read
- School Learning
- Math-Statistics
Improve your Coding Skills with Practice
What kind of Experience do you want to share?
Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.
30 8.1 Experimental design: What is it and when should it be used?
Learning objectives.
- Define experiment
- Identify the core features of true experimental designs
- Describe the difference between an experimental group and a control group
- Identify and describe the various types of true experimental designs
Experiments are an excellent data collection strategy for social workers wishing to observe the effects of a clinical intervention or social welfare program. Understanding what experiments are and how they are conducted is useful for all social scientists, whether they actually plan to use this methodology or simply aim to understand findings from experimental studies. An experiment is a method of data collection designed to test hypotheses under controlled conditions. In social scientific research, the term experiment has a precise meaning and should not be used to describe all research methodologies.
Experiments have a long and important history in social science. Behaviorists such as John Watson, B. F. Skinner, Ivan Pavlov, and Albert Bandura used experimental design to demonstrate the various types of conditioning. Using strictly controlled environments, behaviorists were able to isolate a single stimulus as the cause of measurable differences in behavior or physiological responses. The foundations of social learning theory and behavior modification are found in experimental research projects. Moreover, behaviorist experiments brought psychology and social science away from the abstract world of Freudian analysis and towards empirical inquiry, grounded in real-world observations and objectively-defined variables. Experiments are used at all levels of social work inquiry, including agency-based experiments that test therapeutic interventions and policy experiments that test new programs.
Several kinds of experimental designs exist. In general, designs considered to be true experiments contain three basic key features:
- random assignment of participants into experimental and control groups
- a “treatment” (or intervention) provided to the experimental group
- measurement of the effects of the treatment in a post-test administered to both groups
Some true experiments are more complex. Their designs can also include a pre-test and can have more than two groups, but these are the minimum requirements for a design to be a true experiment.
Experimental and control groups
In a true experiment, the effect of an intervention is tested by comparing two groups: one that is exposed to the intervention (the experimental group , also known as the treatment group) and another that does not receive the intervention (the control group ). Importantly, participants in a true experiment need to be randomly assigned to either the control or experimental groups. Random assignment uses a random number generator or some other random process to assign people into experimental and control groups. Random assignment is important in experimental research because it helps to ensure that the experimental group and control group are comparable and that any differences between the experimental and control groups are due to random chance. We will address more of the logic behind random assignment in the next section.
Treatment or intervention
In an experiment, the independent variable is receiving the intervention being tested—for example, a therapeutic technique, prevention program, or access to some service or support. It is less common in of social work research, but social science research may also have a stimulus, rather than an intervention as the independent variable. For example, an electric shock or a reading about death might be used as a stimulus to provoke a response.
In some cases, it may be immoral to withhold treatment completely from a control group within an experiment. If you recruited two groups of people with severe addiction and only provided treatment to one group, the other group would likely suffer. For these cases, researchers use a control group that receives “treatment as usual.” Experimenters must clearly define what treatment as usual means. For example, a standard treatment in substance abuse recovery is attending Alcoholics Anonymous or Narcotics Anonymous meetings. A substance abuse researcher conducting an experiment may use twelve-step programs in their control group and use their experimental intervention in the experimental group. The results would show whether the experimental intervention worked better than normal treatment, which is useful information.
The dependent variable is usually the intended effect the researcher wants the intervention to have. If the researcher is testing a new therapy for individuals with binge eating disorder, their dependent variable may be the number of binge eating episodes a participant reports. The researcher likely expects her intervention to decrease the number of binge eating episodes reported by participants. Thus, she must, at a minimum, measure the number of episodes that occur after the intervention, which is the post-test . In a classic experimental design, participants are also given a pretest to measure the dependent variable before the experimental treatment begins.
Types of experimental design
Let’s put these concepts in chronological order so we can better understand how an experiment runs from start to finish. Once you’ve collected your sample, you’ll need to randomly assign your participants to the experimental group and control group. In a common type of experimental design, you will then give both groups your pretest, which measures your dependent variable, to see what your participants are like before you start your intervention. Next, you will provide your intervention, or independent variable, to your experimental group, but not to your control group. Many interventions last a few weeks or months to complete, particularly therapeutic treatments. Finally, you will administer your post-test to both groups to observe any changes in your dependent variable. What we’ve just described is known as the classical experimental design and is the simplest type of true experimental design. All of the designs we review in this section are variations on this approach. Figure 8.1 visually represents these steps.
An interesting example of experimental research can be found in Shannon K. McCoy and Brenda Major’s (2003) study of people’s perceptions of prejudice. In one portion of this multifaceted study, all participants were given a pretest to assess their levels of depression. No significant differences in depression were found between the experimental and control groups during the pretest. Participants in the experimental group were then asked to read an article suggesting that prejudice against their own racial group is severe and pervasive, while participants in the control group were asked to read an article suggesting that prejudice against a racial group other than their own is severe and pervasive. Clearly, these were not meant to be interventions or treatments to help depression, but were stimuli designed to elicit changes in people’s depression levels. Upon measuring depression scores during the post-test period, the researchers discovered that those who had received the experimental stimulus (the article citing prejudice against their same racial group) reported greater depression than those in the control group. This is just one of many examples of social scientific experimental research.
In addition to classic experimental design, there are two other ways of designing experiments that are considered to fall within the purview of “true” experiments (Babbie, 2010; Campbell & Stanley, 1963). The posttest-only control group design is almost the same as classic experimental design, except it does not use a pretest. Researchers who use posttest-only designs want to eliminate testing effects , in which participants’ scores on a measure change because they have already been exposed to it. If you took multiple SAT or ACT practice exams before you took the real one you sent to colleges, you’ve taken advantage of testing effects to get a better score. Considering the previous example on racism and depression, participants who are given a pretest about depression before being exposed to the stimulus would likely assume that the intervention is designed to address depression. That knowledge could cause them to answer differently on the post-test than they otherwise would. In theory, as long as the control and experimental groups have been determined randomly and are therefore comparable, no pretest is needed. However, most researchers prefer to use pretests in case randomization did not result in equivalent groups and to help assess change over time within both the experimental and control groups.
Researchers wishing to account for testing effects but also gather pretest data can use a Solomon four-group design. In the Solomon four-group design , the researcher uses four groups. Two groups are treated as they would be in a classic experiment—pretest, experimental group intervention, and post-test. The other two groups do not receive the pretest, though one receives the intervention. All groups are given the post-test. Table 8.1 illustrates the features of each of the four groups in the Solomon four-group design. By having one set of experimental and control groups that complete the pretest (Groups 1 and 2) and another set that does not complete the pretest (Groups 3 and 4), researchers using the Solomon four-group design can account for testing effects in their analysis.
Solomon four-group designs are challenging to implement in the real world because they are time- and resource-intensive. Researchers must recruit enough participants to create four groups and implement interventions in two of them.
Overall, true experimental designs are sometimes difficult to implement in a real-world practice environment. It may be impossible to withhold treatment from a control group or randomly assign participants in a study. In these cases, pre-experimental and quasi-experimental designs–which we will discuss in the next section–can be used. However, the differences in rigor from true experimental designs leave their conclusions more open to critique.
Experimental design in macro-level research
You can imagine that social work researchers may be limited in their ability to use random assignment when examining the effects of governmental policy on individuals. For example, it is unlikely that a researcher could randomly assign some states to implement decriminalization of recreational marijuana and some states not to in order to assess the effects of the policy change. There are, however, important examples of policy experiments that use random assignment, including the Oregon Medicaid experiment. In the Oregon Medicaid experiment, the wait list for Oregon was so long, state officials conducted a lottery to see who from the wait list would receive Medicaid (Baicker et al., 2013). Researchers used the lottery as a natural experiment that included random assignment. People selected to be a part of Medicaid were the experimental group and those on the wait list were in the control group. There are some practical complications macro-level experiments, just as with other experiments. For example, the ethical concern with using people on a wait list as a control group exists in macro-level research just as it does in micro-level research.
Key Takeaways
- True experimental designs require random assignment.
- Control groups do not receive an intervention, and experimental groups receive an intervention.
- The basic components of a true experiment include a pretest, posttest, control group, and experimental group.
- Testing effects may cause researchers to use variations on the classic experimental design.
- Classic experimental design- uses random assignment, an experimental and control group, as well as pre- and posttesting
- Control group- the group in an experiment that does not receive the intervention
- Experiment- a method of data collection designed to test hypotheses under controlled conditions
- Experimental group- the group in an experiment that receives the intervention
- Posttest- a measurement taken after the intervention
- Posttest-only control group design- a type of experimental design that uses random assignment, and an experimental and control group, but does not use a pretest
- Pretest- a measurement taken prior to the intervention
- Random assignment-using a random process to assign people into experimental and control groups
- Solomon four-group design- uses random assignment, two experimental and two control groups, pretests for half of the groups, and posttests for all
- Testing effects- when a participant’s scores on a measure change because they have already been exposed to it
- True experiments- a group of experimental designs that contain independent and dependent variables, pretesting and post testing, and experimental and control groups
Image attributions
exam scientific experiment by mohamed_hassan CC-0
Foundations of Social Work Research Copyright © 2020 by Rebecca L. Mauldin is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.
IMAGES
COMMENTS
Mar 26, 2024 · Experimental design is a structured approach used to conduct scientific experiments. It enables researchers to explore cause-and-effect relationships by controlling variables and testing hypotheses. This guide explores the types of experimental designs, common methods, and best practices for planning and conducting experiments.
Jul 31, 2023 · Three types of experimental designs are commonly used: 1. Independent Measures. Independent measures design, also known as between-groups, is an experimental design where different participants are used in each condition of the independent variable. This means that each condition of the experiment includes a different group of participants.
What is Experimental Design? An experimental design is a detailed plan for collecting and using data to identify causal relationships. Through careful planning, the design of experiments allows your data collection efforts to have a reasonable chance of detecting effects and testing hypotheses that answer your research questions.
Dec 3, 2019 · Experimental design create a set of procedures to systematically test a hypothesis. A good experimental design requires a strong understanding of the system you are studying. There are five key steps in designing an experiment: Consider your variables and how they are related; Write a specific, testable hypothesis
The meaning of EXPERIMENTAL DESIGN is a method of research in the social sciences (such as sociology or psychology) in which a controlled experimental factor is subjected to special treatment for purposes of comparison with a factor kept constant.
May 28, 2024 · Definition of Experimental Design. Experimental design is a systematic method of implementing experiments in which one can manipulate variables in a structured way in order to analyze hypotheses and draw outcomes based on empirical evidence. Types of Experimental Design
The design of experiments, also known as experiment design or experimental design, is the design of any task that aims to describe and explain the variation of information under conditions that are hypothesized to reflect the variation.
What we’ve just described is known as the classical experimental design and is the simplest type of true experimental design. All of the designs we review in this section are variations on this approach. Figure 8.1 visually represents these steps. Figure 8.1 Steps in classic experimental design
Meaning of Experimental Designs: Experimental designs are various types of plot arrangements which are used to test a set of treatments to draw valid conclusions about a particular problem. Before dealing with experimental designs, it is necessary to define experiment, treatment and experimental unit.
Jun 9, 2024 · Experimental Design | Types, Definition & Examples. Published on June 9, 2024 by Julia Merkus, MA.Revised on December 4, 2024. An experimental design is a systematic plan for conducting an experiment that aims to test a hypothesis or answer a research question.