Home Blog Design Understanding Data Presentations (Guide + Examples)
Understanding Data Presentations (Guide + Examples)
In this age of overwhelming information, the skill to effectively convey data has become extremely valuable. Initiating a discussion on data presentation types involves thoughtful consideration of the nature of your data and the message you aim to convey. Different types of visualizations serve distinct purposes. Whether you’re dealing with how to develop a report or simply trying to communicate complex information, how you present data influences how well your audience understands and engages with it. This extensive guide leads you through the different ways of data presentation.
Table of Contents
What is a Data Presentation?
What should a data presentation include, line graphs, treemap chart, scatter plot, how to choose a data presentation type, recommended data presentation templates, common mistakes done in data presentation.
A data presentation is a slide deck that aims to disclose quantitative information to an audience through the use of visual formats and narrative techniques derived from data analysis, making complex data understandable and actionable. This process requires a series of tools, such as charts, graphs, tables, infographics, dashboards, and so on, supported by concise textual explanations to improve understanding and boost retention rate.
Data presentations require us to cull data in a format that allows the presenter to highlight trends, patterns, and insights so that the audience can act upon the shared information. In a few words, the goal of data presentations is to enable viewers to grasp complicated concepts or trends quickly, facilitating informed decision-making or deeper analysis.
Data presentations go beyond the mere usage of graphical elements. Seasoned presenters encompass visuals with the art of data storytelling , so the speech skillfully connects the points through a narrative that resonates with the audience. Depending on the purpose – inspire, persuade, inform, support decision-making processes, etc. – is the data presentation format that is better suited to help us in this journey.
To nail your upcoming data presentation, ensure to count with the following elements:
- Clear Objectives: Understand the intent of your presentation before selecting the graphical layout and metaphors to make content easier to grasp.
- Engaging introduction: Use a powerful hook from the get-go. For instance, you can ask a big question or present a problem that your data will answer. Take a look at our guide on how to start a presentation for tips & insights.
- Structured Narrative: Your data presentation must tell a coherent story. This means a beginning where you present the context, a middle section in which you present the data, and an ending that uses a call-to-action. Check our guide on presentation structure for further information.
- Visual Elements: These are the charts, graphs, and other elements of visual communication we ought to use to present data. This article will cover one by one the different types of data representation methods we can use, and provide further guidance on choosing between them.
- Insights and Analysis: This is not just showcasing a graph and letting people get an idea about it. A proper data presentation includes the interpretation of that data, the reason why it’s included, and why it matters to your research.
- Conclusion & CTA: Ending your presentation with a call to action is necessary. Whether you intend to wow your audience into acquiring your services, inspire them to change the world, or whatever the purpose of your presentation, there must be a stage in which you convey all that you shared and show the path to staying in touch. Plan ahead whether you want to use a thank-you slide, a video presentation, or which method is apt and tailored to the kind of presentation you deliver.
- Q&A Session: After your speech is concluded, allocate 3-5 minutes for the audience to raise any questions about the information you disclosed. This is an extra chance to establish your authority on the topic. Check our guide on questions and answer sessions in presentations here.
Bar charts are a graphical representation of data using rectangular bars to show quantities or frequencies in an established category. They make it easy for readers to spot patterns or trends. Bar charts can be horizontal or vertical, although the vertical format is commonly known as a column chart. They display categorical, discrete, or continuous variables grouped in class intervals [1] . They include an axis and a set of labeled bars horizontally or vertically. These bars represent the frequencies of variable values or the values themselves. Numbers on the y-axis of a vertical bar chart or the x-axis of a horizontal bar chart are called the scale.
Real-Life Application of Bar Charts
Let’s say a sales manager is presenting sales to their audience. Using a bar chart, he follows these steps.
Step 1: Selecting Data
The first step is to identify the specific data you will present to your audience.
The sales manager has highlighted these products for the presentation.
- Product A: Men’s Shoes
- Product B: Women’s Apparel
- Product C: Electronics
- Product D: Home Decor
Step 2: Choosing Orientation
Opt for a vertical layout for simplicity. Vertical bar charts help compare different categories in case there are not too many categories [1] . They can also help show different trends. A vertical bar chart is used where each bar represents one of the four chosen products. After plotting the data, it is seen that the height of each bar directly represents the sales performance of the respective product.
It is visible that the tallest bar (Electronics – Product C) is showing the highest sales. However, the shorter bars (Women’s Apparel – Product B and Home Decor – Product D) need attention. It indicates areas that require further analysis or strategies for improvement.
Step 3: Colorful Insights
Different colors are used to differentiate each product. It is essential to show a color-coded chart where the audience can distinguish between products.
- Men’s Shoes (Product A): Yellow
- Women’s Apparel (Product B): Orange
- Electronics (Product C): Violet
- Home Decor (Product D): Blue
Bar charts are straightforward and easily understandable for presenting data. They are versatile when comparing products or any categorical data [2] . Bar charts adapt seamlessly to retail scenarios. Despite that, bar charts have a few shortcomings. They cannot illustrate data trends over time. Besides, overloading the chart with numerous products can lead to visual clutter, diminishing its effectiveness.
For more information, check our collection of bar chart templates for PowerPoint .
Line graphs help illustrate data trends, progressions, or fluctuations by connecting a series of data points called ‘markers’ with straight line segments. This provides a straightforward representation of how values change [5] . Their versatility makes them invaluable for scenarios requiring a visual understanding of continuous data. In addition, line graphs are also useful for comparing multiple datasets over the same timeline. Using multiple line graphs allows us to compare more than one data set. They simplify complex information so the audience can quickly grasp the ups and downs of values. From tracking stock prices to analyzing experimental results, you can use line graphs to show how data changes over a continuous timeline. They show trends with simplicity and clarity.
Real-life Application of Line Graphs
To understand line graphs thoroughly, we will use a real case. Imagine you’re a financial analyst presenting a tech company’s monthly sales for a licensed product over the past year. Investors want insights into sales behavior by month, how market trends may have influenced sales performance and reception to the new pricing strategy. To present data via a line graph, you will complete these steps.
First, you need to gather the data. In this case, your data will be the sales numbers. For example:
- January: $45,000
- February: $55,000
- March: $45,000
- April: $60,000
- May: $ 70,000
- June: $65,000
- July: $62,000
- August: $68,000
- September: $81,000
- October: $76,000
- November: $87,000
- December: $91,000
After choosing the data, the next step is to select the orientation. Like bar charts, you can use vertical or horizontal line graphs. However, we want to keep this simple, so we will keep the timeline (x-axis) horizontal while the sales numbers (y-axis) vertical.
Step 3: Connecting Trends
After adding the data to your preferred software, you will plot a line graph. In the graph, each month’s sales are represented by data points connected by a line.
Step 4: Adding Clarity with Color
If there are multiple lines, you can also add colors to highlight each one, making it easier to follow.
Line graphs excel at visually presenting trends over time. These presentation aids identify patterns, like upward or downward trends. However, too many data points can clutter the graph, making it harder to interpret. Line graphs work best with continuous data but are not suitable for categories.
For more information, check our collection of line chart templates for PowerPoint and our article about how to make a presentation graph .
A data dashboard is a visual tool for analyzing information. Different graphs, charts, and tables are consolidated in a layout to showcase the information required to achieve one or more objectives. Dashboards help quickly see Key Performance Indicators (KPIs). You don’t make new visuals in the dashboard; instead, you use it to display visuals you’ve already made in worksheets [3] .
Keeping the number of visuals on a dashboard to three or four is recommended. Adding too many can make it hard to see the main points [4]. Dashboards can be used for business analytics to analyze sales, revenue, and marketing metrics at a time. They are also used in the manufacturing industry, as they allow users to grasp the entire production scenario at the moment while tracking the core KPIs for each line.
Real-Life Application of a Dashboard
Consider a project manager presenting a software development project’s progress to a tech company’s leadership team. He follows the following steps.
Step 1: Defining Key Metrics
To effectively communicate the project’s status, identify key metrics such as completion status, budget, and bug resolution rates. Then, choose measurable metrics aligned with project objectives.
Step 2: Choosing Visualization Widgets
After finalizing the data, presentation aids that align with each metric are selected. For this project, the project manager chooses a progress bar for the completion status and uses bar charts for budget allocation. Likewise, he implements line charts for bug resolution rates.
Step 3: Dashboard Layout
Key metrics are prominently placed in the dashboard for easy visibility, and the manager ensures that it appears clean and organized.
Dashboards provide a comprehensive view of key project metrics. Users can interact with data, customize views, and drill down for detailed analysis. However, creating an effective dashboard requires careful planning to avoid clutter. Besides, dashboards rely on the availability and accuracy of underlying data sources.
For more information, check our article on how to design a dashboard presentation , and discover our collection of dashboard PowerPoint templates .
Treemap charts represent hierarchical data structured in a series of nested rectangles [6] . As each branch of the ‘tree’ is given a rectangle, smaller tiles can be seen representing sub-branches, meaning elements on a lower hierarchical level than the parent rectangle. Each one of those rectangular nodes is built by representing an area proportional to the specified data dimension.
Treemaps are useful for visualizing large datasets in compact space. It is easy to identify patterns, such as which categories are dominant. Common applications of the treemap chart are seen in the IT industry, such as resource allocation, disk space management, website analytics, etc. Also, they can be used in multiple industries like healthcare data analysis, market share across different product categories, or even in finance to visualize portfolios.
Real-Life Application of a Treemap Chart
Let’s consider a financial scenario where a financial team wants to represent the budget allocation of a company. There is a hierarchy in the process, so it is helpful to use a treemap chart. In the chart, the top-level rectangle could represent the total budget, and it would be subdivided into smaller rectangles, each denoting a specific department. Further subdivisions within these smaller rectangles might represent individual projects or cost categories.
Step 1: Define Your Data Hierarchy
While presenting data on the budget allocation, start by outlining the hierarchical structure. The sequence will be like the overall budget at the top, followed by departments, projects within each department, and finally, individual cost categories for each project.
- Top-level rectangle: Total Budget
- Second-level rectangles: Departments (Engineering, Marketing, Sales)
- Third-level rectangles: Projects within each department
- Fourth-level rectangles: Cost categories for each project (Personnel, Marketing Expenses, Equipment)
Step 2: Choose a Suitable Tool
It’s time to select a data visualization tool supporting Treemaps. Popular choices include Tableau, Microsoft Power BI, PowerPoint, or even coding with libraries like D3.js. It is vital to ensure that the chosen tool provides customization options for colors, labels, and hierarchical structures.
Here, the team uses PowerPoint for this guide because of its user-friendly interface and robust Treemap capabilities.
Step 3: Make a Treemap Chart with PowerPoint
After opening the PowerPoint presentation, they chose “SmartArt” to form the chart. The SmartArt Graphic window has a “Hierarchy” category on the left. Here, you will see multiple options. You can choose any layout that resembles a Treemap. The “Table Hierarchy” or “Organization Chart” options can be adapted. The team selects the Table Hierarchy as it looks close to a Treemap.
Step 5: Input Your Data
After that, a new window will open with a basic structure. They add the data one by one by clicking on the text boxes. They start with the top-level rectangle, representing the total budget.
Step 6: Customize the Treemap
By clicking on each shape, they customize its color, size, and label. At the same time, they can adjust the font size, style, and color of labels by using the options in the “Format” tab in PowerPoint. Using different colors for each level enhances the visual difference.
Treemaps excel at illustrating hierarchical structures. These charts make it easy to understand relationships and dependencies. They efficiently use space, compactly displaying a large amount of data, reducing the need for excessive scrolling or navigation. Additionally, using colors enhances the understanding of data by representing different variables or categories.
In some cases, treemaps might become complex, especially with deep hierarchies. It becomes challenging for some users to interpret the chart. At the same time, displaying detailed information within each rectangle might be constrained by space. It potentially limits the amount of data that can be shown clearly. Without proper labeling and color coding, there’s a risk of misinterpretation.
A heatmap is a data visualization tool that uses color coding to represent values across a two-dimensional surface. In these, colors replace numbers to indicate the magnitude of each cell. This color-shaded matrix display is valuable for summarizing and understanding data sets with a glance [7] . The intensity of the color corresponds to the value it represents, making it easy to identify patterns, trends, and variations in the data.
As a tool, heatmaps help businesses analyze website interactions, revealing user behavior patterns and preferences to enhance overall user experience. In addition, companies use heatmaps to assess content engagement, identifying popular sections and areas of improvement for more effective communication. They excel at highlighting patterns and trends in large datasets, making it easy to identify areas of interest.
We can implement heatmaps to express multiple data types, such as numerical values, percentages, or even categorical data. Heatmaps help us easily spot areas with lots of activity, making them helpful in figuring out clusters [8] . When making these maps, it is important to pick colors carefully. The colors need to show the differences between groups or levels of something. And it is good to use colors that people with colorblindness can easily see.
Check our detailed guide on how to create a heatmap here. Also discover our collection of heatmap PowerPoint templates .
Pie charts are circular statistical graphics divided into slices to illustrate numerical proportions. Each slice represents a proportionate part of the whole, making it easy to visualize the contribution of each component to the total.
The size of the pie charts is influenced by the value of data points within each pie. The total of all data points in a pie determines its size. The pie with the highest data points appears as the largest, whereas the others are proportionally smaller. However, you can present all pies of the same size if proportional representation is not required [9] . Sometimes, pie charts are difficult to read, or additional information is required. A variation of this tool can be used instead, known as the donut chart , which has the same structure but a blank center, creating a ring shape. Presenters can add extra information, and the ring shape helps to declutter the graph.
Pie charts are used in business to show percentage distribution, compare relative sizes of categories, or present straightforward data sets where visualizing ratios is essential.
Real-Life Application of Pie Charts
Consider a scenario where you want to represent the distribution of the data. Each slice of the pie chart would represent a different category, and the size of each slice would indicate the percentage of the total portion allocated to that category.
Step 1: Define Your Data Structure
Imagine you are presenting the distribution of a project budget among different expense categories.
- Column A: Expense Categories (Personnel, Equipment, Marketing, Miscellaneous)
- Column B: Budget Amounts ($40,000, $30,000, $20,000, $10,000) Column B represents the values of your categories in Column A.
Step 2: Insert a Pie Chart
Using any of the accessible tools, you can create a pie chart. The most convenient tools for forming a pie chart in a presentation are presentation tools such as PowerPoint or Google Slides. You will notice that the pie chart assigns each expense category a percentage of the total budget by dividing it by the total budget.
For instance:
- Personnel: $40,000 / ($40,000 + $30,000 + $20,000 + $10,000) = 40%
- Equipment: $30,000 / ($40,000 + $30,000 + $20,000 + $10,000) = 30%
- Marketing: $20,000 / ($40,000 + $30,000 + $20,000 + $10,000) = 20%
- Miscellaneous: $10,000 / ($40,000 + $30,000 + $20,000 + $10,000) = 10%
You can make a chart out of this or just pull out the pie chart from the data.
3D pie charts and 3D donut charts are quite popular among the audience. They stand out as visual elements in any presentation slide, so let’s take a look at how our pie chart example would look in 3D pie chart format.
Step 03: Results Interpretation
The pie chart visually illustrates the distribution of the project budget among different expense categories. Personnel constitutes the largest portion at 40%, followed by equipment at 30%, marketing at 20%, and miscellaneous at 10%. This breakdown provides a clear overview of where the project funds are allocated, which helps in informed decision-making and resource management. It is evident that personnel are a significant investment, emphasizing their importance in the overall project budget.
Pie charts provide a straightforward way to represent proportions and percentages. They are easy to understand, even for individuals with limited data analysis experience. These charts work well for small datasets with a limited number of categories.
However, a pie chart can become cluttered and less effective in situations with many categories. Accurate interpretation may be challenging, especially when dealing with slight differences in slice sizes. In addition, these charts are static and do not effectively convey trends over time.
For more information, check our collection of pie chart templates for PowerPoint .
Histograms present the distribution of numerical variables. Unlike a bar chart that records each unique response separately, histograms organize numeric responses into bins and show the frequency of reactions within each bin [10] . The x-axis of a histogram shows the range of values for a numeric variable. At the same time, the y-axis indicates the relative frequencies (percentage of the total counts) for that range of values.
Whenever you want to understand the distribution of your data, check which values are more common, or identify outliers, histograms are your go-to. Think of them as a spotlight on the story your data is telling. A histogram can provide a quick and insightful overview if you’re curious about exam scores, sales figures, or any numerical data distribution.
Real-Life Application of a Histogram
In the histogram data analysis presentation example, imagine an instructor analyzing a class’s grades to identify the most common score range. A histogram could effectively display the distribution. It will show whether most students scored in the average range or if there are significant outliers.
Step 1: Gather Data
He begins by gathering the data. The scores of each student in class are gathered to analyze exam scores.
After arranging the scores in ascending order, bin ranges are set.
Step 2: Define Bins
Bins are like categories that group similar values. Think of them as buckets that organize your data. The presenter decides how wide each bin should be based on the range of the values. For instance, the instructor sets the bin ranges based on score intervals: 60-69, 70-79, 80-89, and 90-100.
Step 3: Count Frequency
Now, he counts how many data points fall into each bin. This step is crucial because it tells you how often specific ranges of values occur. The result is the frequency distribution, showing the occurrences of each group.
Here, the instructor counts the number of students in each category.
- 60-69: 1 student (Kate)
- 70-79: 4 students (David, Emma, Grace, Jack)
- 80-89: 7 students (Alice, Bob, Frank, Isabel, Liam, Mia, Noah)
- 90-100: 3 students (Clara, Henry, Olivia)
Step 4: Create the Histogram
It’s time to turn the data into a visual representation. Draw a bar for each bin on a graph. The width of the bar should correspond to the range of the bin, and the height should correspond to the frequency. To make your histogram understandable, label the X and Y axes.
In this case, the X-axis should represent the bins (e.g., test score ranges), and the Y-axis represents the frequency.
The histogram of the class grades reveals insightful patterns in the distribution. Most students, with seven students, fall within the 80-89 score range. The histogram provides a clear visualization of the class’s performance. It showcases a concentration of grades in the upper-middle range with few outliers at both ends. This analysis helps in understanding the overall academic standing of the class. It also identifies the areas for potential improvement or recognition.
Thus, histograms provide a clear visual representation of data distribution. They are easy to interpret, even for those without a statistical background. They apply to various types of data, including continuous and discrete variables. One weak point is that histograms do not capture detailed patterns in students’ data, with seven compared to other visualization methods.
A scatter plot is a graphical representation of the relationship between two variables. It consists of individual data points on a two-dimensional plane. This plane plots one variable on the x-axis and the other on the y-axis. Each point represents a unique observation. It visualizes patterns, trends, or correlations between the two variables.
Scatter plots are also effective in revealing the strength and direction of relationships. They identify outliers and assess the overall distribution of data points. The points’ dispersion and clustering reflect the relationship’s nature, whether it is positive, negative, or lacks a discernible pattern. In business, scatter plots assess relationships between variables such as marketing cost and sales revenue. They help present data correlations and decision-making.
Real-Life Application of Scatter Plot
A group of scientists is conducting a study on the relationship between daily hours of screen time and sleep quality. After reviewing the data, they managed to create this table to help them build a scatter plot graph:
In the provided example, the x-axis represents Daily Hours of Screen Time, and the y-axis represents the Sleep Quality Rating.
The scientists observe a negative correlation between the amount of screen time and the quality of sleep. This is consistent with their hypothesis that blue light, especially before bedtime, has a significant impact on sleep quality and metabolic processes.
There are a few things to remember when using a scatter plot. Even when a scatter diagram indicates a relationship, it doesn’t mean one variable affects the other. A third factor can influence both variables. The more the plot resembles a straight line, the stronger the relationship is perceived [11] . If it suggests no ties, the observed pattern might be due to random fluctuations in data. When the scatter diagram depicts no correlation, whether the data might be stratified is worth considering.
Choosing the appropriate data presentation type is crucial when making a presentation . Understanding the nature of your data and the message you intend to convey will guide this selection process. For instance, when showcasing quantitative relationships, scatter plots become instrumental in revealing correlations between variables. If the focus is on emphasizing parts of a whole, pie charts offer a concise display of proportions. Histograms, on the other hand, prove valuable for illustrating distributions and frequency patterns.
Bar charts provide a clear visual comparison of different categories. Likewise, line charts excel in showcasing trends over time, while tables are ideal for detailed data examination. Starting a presentation on data presentation types involves evaluating the specific information you want to communicate and selecting the format that aligns with your message. This ensures clarity and resonance with your audience from the beginning of your presentation.
1. Fact Sheet Dashboard for Data Presentation
Convey all the data you need to present in this one-pager format, an ideal solution tailored for users looking for presentation aids. Global maps, donut chats, column graphs, and text neatly arranged in a clean layout presented in light and dark themes.
Use This Template
2. 3D Column Chart Infographic PPT Template
Represent column charts in a highly visual 3D format with this PPT template. A creative way to present data, this template is entirely editable, and we can craft either a one-page infographic or a series of slides explaining what we intend to disclose point by point.
3. Data Circles Infographic PowerPoint Template
An alternative to the pie chart and donut chart diagrams, this template features a series of curved shapes with bubble callouts as ways of presenting data. Expand the information for each arch in the text placeholder areas.
4. Colorful Metrics Dashboard for Data Presentation
This versatile dashboard template helps us in the presentation of the data by offering several graphs and methods to convert numbers into graphics. Implement it for e-commerce projects, financial projections, project development, and more.
5. Animated Data Presentation Tools for PowerPoint & Google Slides
A slide deck filled with most of the tools mentioned in this article, from bar charts, column charts, treemap graphs, pie charts, histogram, etc. Animated effects make each slide look dynamic when sharing data with stakeholders.
6. Statistics Waffle Charts PPT Template for Data Presentations
This PPT template helps us how to present data beyond the typical pie chart representation. It is widely used for demographics, so it’s a great fit for marketing teams, data science professionals, HR personnel, and more.
7. Data Presentation Dashboard Template for Google Slides
A compendium of tools in dashboard format featuring line graphs, bar charts, column charts, and neatly arranged placeholder text areas.
8. Weather Dashboard for Data Presentation
Share weather data for agricultural presentation topics, environmental studies, or any kind of presentation that requires a highly visual layout for weather forecasting on a single day. Two color themes are available.
9. Social Media Marketing Dashboard Data Presentation Template
Intended for marketing professionals, this dashboard template for data presentation is a tool for presenting data analytics from social media channels. Two slide layouts featuring line graphs and column charts.
10. Project Management Summary Dashboard Template
A tool crafted for project managers to deliver highly visual reports on a project’s completion, the profits it delivered for the company, and expenses/time required to execute it. 4 different color layouts are available.
11. Profit & Loss Dashboard for PowerPoint and Google Slides
A must-have for finance professionals. This typical profit & loss dashboard includes progress bars, donut charts, column charts, line graphs, and everything that’s required to deliver a comprehensive report about a company’s financial situation.
Overwhelming visuals
One of the mistakes related to using data-presenting methods is including too much data or using overly complex visualizations. They can confuse the audience and dilute the key message.
Inappropriate chart types
Choosing the wrong type of chart for the data at hand can lead to misinterpretation. For example, using a pie chart for data that doesn’t represent parts of a whole is not right.
Lack of context
Failing to provide context or sufficient labeling can make it challenging for the audience to understand the significance of the presented data.
Inconsistency in design
Using inconsistent design elements and color schemes across different visualizations can create confusion and visual disarray.
Failure to provide details
Simply presenting raw data without offering clear insights or takeaways can leave the audience without a meaningful conclusion.
Lack of focus
Not having a clear focus on the key message or main takeaway can result in a presentation that lacks a central theme.
Visual accessibility issues
Overlooking the visual accessibility of charts and graphs can exclude certain audience members who may have difficulty interpreting visual information.
In order to avoid these mistakes in data presentation, presenters can benefit from using presentation templates . These templates provide a structured framework. They ensure consistency, clarity, and an aesthetically pleasing design, enhancing data communication’s overall impact.
Understanding and choosing data presentation types are pivotal in effective communication. Each method serves a unique purpose, so selecting the appropriate one depends on the nature of the data and the message to be conveyed. The diverse array of presentation types offers versatility in visually representing information, from bar charts showing values to pie charts illustrating proportions.
Using the proper method enhances clarity, engages the audience, and ensures that data sets are not just presented but comprehensively understood. By appreciating the strengths and limitations of different presentation types, communicators can tailor their approach to convey information accurately, developing a deeper connection between data and audience understanding.
If you need a quick method to create a data presentation, check out our AI presentation maker . A tool in which you add the topic, curate the outline, select a design, and let AI do the work for you.
[1] Government of Canada, S.C. (2021) 5 Data Visualization 5.2 Bar Chart , 5.2 Bar chart . https://www150.statcan.gc.ca/n1/edu/power-pouvoir/ch9/bargraph-diagrammeabarres/5214818-eng.htm
[2] Kosslyn, S.M., 1989. Understanding charts and graphs. Applied cognitive psychology, 3(3), pp.185-225. https://apps.dtic.mil/sti/pdfs/ADA183409.pdf
[3] Creating a Dashboard . https://it.tufts.edu/book/export/html/1870
[4] https://www.goldenwestcollege.edu/research/data-and-more/data-dashboards/index.html
[5] https://www.mit.edu/course/21/21.guide/grf-line.htm
[6] Jadeja, M. and Shah, K., 2015, January. Tree-Map: A Visualization Tool for Large Data. In GSB@ SIGIR (pp. 9-13). https://ceur-ws.org/Vol-1393/gsb15proceedings.pdf#page=15
[7] Heat Maps and Quilt Plots. https://www.publichealth.columbia.edu/research/population-health-methods/heat-maps-and-quilt-plots
[8] EIU QGIS WORKSHOP. https://www.eiu.edu/qgisworkshop/heatmaps.php
[9] About Pie Charts. https://www.mit.edu/~mbarker/formula1/f1help/11-ch-c8.htm
[10] Histograms. https://sites.utexas.edu/sos/guided/descriptive/numericaldd/descriptiven2/histogram/ [11] https://asq.org/quality-resources/scatter-diagram
Like this article? Please share
Data Analysis, Data Science, Data Visualization Filed under Design
Related Articles
Filed under Design • November 21st, 2024
Line Chart Examples: A Guide to Complex Data Representation
Discover professional line chart examples, creation tips, and ideas to effectively analyze and present your data trends.
Filed under Business • October 8th, 2024
Data-Driven Decision Making: Presenting the Process Behind Informed Choices
Discover how to harness data for informed decision-making and create impactful presentations. A detailed guide + templates on DDDM presentation slides.
Filed under Google Slides Tutorials • June 3rd, 2024
How To Make a Graph on Google Slides
Creating quality graphics is an essential aspect of designing data presentations. Learn how to make a graph in Google Slides with this guide.
Leave a Reply
DATA ANALYSIS AND INTERPRETATION
Jan 03, 2020
70 likes | 366 Views
DATA ANALYSIS AND INTERPRETATION. Getting Data Ready for Analysis. Editing Data Open-ended questions Questionnaire data have to be checked for incompleteness and inconsistencies. Getting Data Ready for Analysis (Cont’d). Handling blank responses
Share Presentation
- blank responses
- data analysis
- questionnaire data
- editing data
- open ended questions
Presentation Transcript
Getting Data Ready for Analysis • Editing Data • Open-ended questions • Questionnaire data have to be checked for incompleteness and inconsistencies
Getting Data Ready for Analysis(Cont’d) • Handling blank responses • If substantial number of questions have been left unanswered: throw out the questionnaire • If only few items are left blank: • Use midpoint • Allow the computer to ignore the blank responses • Mean value of responses of all those who have responded to that particular item • Mean of the responses of this particular respondent to all other questions measuring this variable • Random number
Getting Data Ready for Analysis(Cont’d) • Coding • Use coding sheet first • Categorization • Set up a scheme for categorizing variables such that several items that measuring a concept are all grouped together • Entering data
Data Analysis • Feel for the data • Mean, range, standard deviation, variance • Testing goodness of data • Reliability • Validity • Hypothesis testing
- More by User
Data analysis and Interpretation
“Developing an understanding of the Independent Foster Care Sector in Northern Ireland, through the perspectives of Independent Foster Carers, Independent Foster Care Agencies and other key professionals”.
279 views • 7 slides
Data Analysis, Interpretation, and Reporting
Data Analysis, Interpretation, and Reporting. Eve 9810001M Sabrina 9810002M . Outline. Data Analytic Strategies Six Steps in Qualitative Data Analysis Grounded Theory Analysis Strategies Interpretation Issues in Qualitative Data Analysis Writing Research Reports
829 views • 25 slides
Qualitative Data Analysis and Interpretation
Objectives. Describe the overlap between data gathering and data analysis in qualitative researchExplain the difference between the analysis of data gathered by structured methods and that gathered by unstructured methodsDescribe the process of content analysisDescribe how a computer package can
1.23k views • 32 slides
Qualitative Data Analysis and Interpretation. Data analysis An attempt by the researcher to summarize collected data. Data Interpretation Attempt to find meaning How do these differ by research tradition? Quantitative Qualitative. Data Analysis During Collection.
742 views • 24 slides
ANALYSIS _______________ DATA GATHERING AND THEIR INTERPRETATION
HAPPINESS AS INDICATOR AND PLANNING OBJECTIVE FOR THE SPATIAL DEVELOPMENT POLICY Sini ša Trkulja, Faculty of Geography, University of Belgrade, Serbia Third International Conference on Gross National Happiness Bangkok, Chulalongkorn University 2007. ANALYSIS _______________
252 views • 12 slides
Welcome to Data Analysis and Interpretation
Welcome to Data Analysis and Interpretation. 22-23 March 2011 Dick Schwanke. Examining different mathematical /statistical analysis techniques Applying those techniques to our data.
503 views • 18 slides
BASIC DATA ANALYSIS (WITH EXCEL) AND DATA INTERPRETATION
BASIC DATA ANALYSIS (WITH EXCEL) AND DATA INTERPRETATION. Basic tools : frequency, cross-tabs, mean, median, share and rate. Frequencies. What? The number of times a certain value or class of values occurs What for? A way to summarise data. Frequencies.
484 views • 23 slides
Data Analysis, Interpretation, and Presentation
Data Analysis, Interpretation, and Presentation. Devin Spivey Asmae Mesbahi El Aouame Rahul Potghan. Objectives. Difference between qualitative and quantitative data and analysis. Analyze data gathered from questionnaires. Analyze data gathered from interviews.
1.25k views • 46 slides
Analysis and interpretation of surveillance data
Analysis and interpretation of surveillance data. Integrated Disease Surveillance Programme (IDSP) district surveillance officers (DSO) course. Preliminary questions to the group. Have you been involved in surveillance data analysis?
498 views • 30 slides
Analysis, Presentation, and Interpretation of Data
Analysis, Presentation, and Interpretation of Data. Reported by John C.T. Ko May 5, 2005. The structure of this presentation consists of 3 parts: 1. Theories 2. Example Explanation 3. Exercises. Analysis.
1.18k views • 20 slides
Analysis and Interpretation
Analysis and Interpretation. How Do They Work?. Analysis: examination of the parts or elements. Interpretation: an explanation of the meaning of the work derived from its elements. Where to begin…. Where to begin….
737 views • 43 slides
Data and Interpretation
Data and Interpretation. What have you learnt?. The delver into nature’s aims Seeks freedom and perfection; Let calculation sift his claims With faith and circumspection -Goethe.
490 views • 34 slides
Chapter 6: Data Analysis and Interpretation
Chapter 6: Data Analysis and Interpretation. Data Analysis and Interpretation. After today’s activity you should be able to: Define data analysis and data interpretation Identify appropriate data analysis techniques for your action research project
3.87k views • 32 slides
BOT3015L Data analysis and interpretation
BOT3015L Data analysis and interpretation. Presentation created by Jean Burns and Sarah Tso All photos from Raven et al. Biology of Plants except when otherwise noted. Today. Types of data Discrete, Continuous Independent, dependent Types of statistics Descriptive, Inferential
766 views • 58 slides
Qualitative Data Analysis and Interpretation. Capacity Development in Monitoring and Evaluation Rose Oluoch [email protected]. What to Cover What is Qualitative data What is Qualitative data analysis What is the difference between Qualitative and quantitative data analysis
1.21k views • 28 slides
Data Analysis, Interpretation, and Reporting. Eve 9810001M Sabrina 9810002M. Outline. Data Analytic Strategies Six Steps in Qualitative Data Analysis Grounded Theory Analysis Strategies Interpretation Issues in Qualitative Data Analysis Writing Research Reports Ways of Conducting Reports.
629 views • 25 slides
Data collection and analysis/interpretation
Data collection and analysis/interpretation. Ellen Goldstein MA, Kevin Grumbach MD, Roberto Vargas MPH, Mike Potter MD. Instrument Development. Content Pilot testing – as with any study Community input Feasibility Fit into your setting/ community culture Time commitment
211 views • 6 slides
Data analysis, interpretation and presentation
Data analysis, interpretation and presentation. Overview. Qualitative and quantitative Simple quantitative analysis Simple qualitative analysis Tools to support data analysis Theoretical frameworks: grounded theory, distributed cognition, activity theory
207 views • 16 slides
Analysis and interpretation of data
Analysis and interpretation of data. IDSP training module for state and district surveillance officers Module 9. Learning objectives. Identify the role, importance and techniques of data analysis Sources and management of data for valid conclusions
495 views • 40 slides
320 views • 30 slides
607 views • 58 slides
Chapter 8. Data analysis, interpretation and presentation. Overview. Qualitative and quantitative Simple quantitative analysis Simple qualitative analysis Tools to support data analysis Theoretical frameworks: grounded theory, distributed cognition, activity theory
234 views • 16 slides
- My presentations
Auth with social network:
Download presentation
We think you have liked this presentation. If you wish to download it, please recommend it to your friends in any social system. Share buttons are a little bit lower. Thank you!
Presentation is loading. Please wait.
Chapter 8 Data Analysis, Interpretation and Presentation.
Published by Donavan Hell Modified over 9 years ago
Similar presentations
Presentation on theme: "Chapter 8 Data Analysis, Interpretation and Presentation."— Presentation transcript:
The Range of Qualitative Methods Module number 4 ESRC workshops for qualitative research in management.
Grounded Theory Charmaz (2008).
©2011 1www.id-book.com Data analysis, interpretation and presentation Chapter 8.
© Done by : Latifa Ebrahim Al Doy Chapter 8 Data analysis, interpretation and presentation and presentation.
Data analysis and interpretation. Agenda Part 2 comments – Average score: 87 Part 3: due in 2 weeks Data analysis.
Kazuya Sakai Graduate Student Dept. of CSSE, Auburn University Ch 8.6 Using Theoretical Framework.
Observing users.
Observing users. The aims Discuss the benefits & challenges of different types of observation. Describe how to observe as an on-looker, a participant,
SOWK 6003 Social Work Research Week 10 Quantitative Data Analysis
Chapter 9 Principles of Analysis and Interpretation.
Data Analysis, Interpretation, and Reporting
From Controlled to Natural Settings
CHAPTER 13, qualitative data analysis
Evaluating and Presenting Collected Data Class 33.
Data Analysis for Evaluation Eric Graig, Ph.D.. Slide 2 Innovation Network, Inc. Purpose of this Training To increase your skills in analysis and interpretation.
Research Terminology for The Social Sciences. Data is a collection of observations Observations have associated attributes These attributes are.
FOCUS GROUPS ANALYSIS OF QUALITATIVE DATA
Research Methods in Computer Science Lecture: Quantitative and Qualitative Data Analysis | Department of Science | Interactive Graphics System.
Data analysis, interpretation and presentation
Tutor: Prof. A. Taleb-Bendiab Contact: Telephone: +44 (0) CMPDLLM002 Research Methods Lecture 8: Quantitative.
About project
© 2024 SlidePlayer.com Inc. All rights reserved.
Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser .
Enter the email address you signed up with and we'll email you a reset link.
- We're Hiring!
- Help Center
Download Free PDF
Presentation, Analysis and Interpretation of data
Related papers
Data analysis is the process of bringing order, structure and meaning to the mass of collected data. It is a messy, ambiguous, time consuming, creative, and fascinating process. It does not proceed in a linear fashion; it is not neat. Data analysis is a search for answers about relationships among categories of data."-Marshall and Rossman, 1990:111 Hitchcock and Hughes take this one step further: "…the ways in which the researcher moves from a description of what is the case to an explanation of why what is the case is the case."-Hitchcock and Hughes 1995:295
Data are collected often in raw form. These are then not useable unless summarized. The techniques of presentation in tabular and graphical forms are introduced. Some illustrations provided are real-world examples. Graphical presentations cover bar chart, pie chart, histogram, frequency polygon, pareto chart, frequency curve and line diagram. Data are often collected in raw form. These are then not useable unless summarized. There are certain guidelines for data summarization such as summarization-should be as useful as possible,-should represent data fairly, and-should be easy to interpret. After collection of data (primary or secondary), it is necessary to summarize them suitably and present in such forms as can facilitate subsequent analysis and interpretation. There are two major tools/techniques for presentation of data as follows:-Presentation in tabular form-Presentation in graphical form. 2.1 Tabular Presentation Data may be presented in the form of statistical tables. In one table only simple frequencies can be shown. Also, in the same table cumulative frequencies, relative frequencies, and cumulative relative frequencies can be shown. Relative frequencies and cumulative frequencies are defined as follows: Relative frequency: It means the ratio of the frequency in the category of concern to the total frequency in the reference set.
Instrumental Analyses of Pollutants, Elsevier Science …, 1991
This chapter presents the data gathered on the field for the purpose of the study. Demographic and preliminary analysis of data and statistical presentation of results from the questions raised were carried out. Four hundred (400) questionnaires were administered and retrieved successfully. And this represents a response rate of 100%.
Indian Journal of Anaesthesia, 2016
It important to properly collect, code, clean and edit the data before interpreting and displaying the research results. Computers play a major role in different phases of research starting from conceptual, design and planning, data collection, data analysis and research publication phases. The main objective of data display is to summarize the characteristics of a data and to make the data more comprehensible and meaningful. Usually data is presented depending upon the type of data in different tables and graphs. This will enable not only to understand the data behaviour, but also useful in choosing the different statistical tests to be applied.
This stage will: • Explain different types of qualitative data analysis • Explain different types of quantitative data analysis • Help you to interpret the results of your data analysis Once you have decided on your method of data collection and have gathered all of the data you need, you need to decide how to analyze and interpret your data. This can be done in a variety of ways, and will depend on whether you used qualitative, quantitative, or mixed methods of data collection. How Do I Analyze and Interpret Qualitative Data? The first thing to do is to read through all of your textual material, listen to all of your audio material, and look carefully at all of your visual material. You have to have a holistic sense of what you have and you have to form some preliminary impression as to what it all means. "Preliminary" is emphasized here because as you go through the materials in any systematic way, your first impressions must be changed if necessary. We can think of organizing your analysis and interpretation in terms of: • Ways of measuring from your qualitative material: This may be, and mostly is, nothing more complicated than sorting things into kinds so the measurement is nominal. • Establishing meaning: We have "patterning" as one style and "understanding" as another. Of course we tend to do both as we work through the materials. Some formal methods have both approaches built into them. You may organize your analysis using one of these methods. Or you may choose to use one or more in combination. However, when using multiple methods, careful consideration must be given to integrating the resulting disparate elements into an overall synthesis. Classification involves sorting things into kinds. This can be a process of classifying and naming elements as a measurement device. Or it can involve the development of a system of concepts. It can be both. Induction is a more or less formal development of hypotheses on the basis of elements of the material which are tested against other elements. Content analysis involves elements in the material being counted in order to generate a set of numbers for statistical analyses. This can be very simple. For example, the number of times an issue is identified in a set of interviews can be counted and reported on as a frequency count. More complex statistical approaches are appropriate if there are a very large number of cases. Qualitative comparative analysis (QCA) is the systematic description of cases, in terms of the presence or SAGE 2017 SAGE Publications, Ltd. All Rights Reserved.
Journal of the Royal Statistical Society: Series A (Statistics in Society), 2005
Book reviews Books for review If you would like to review a book, and thereby to retain it for your collection, please contact the Book Reviews Editor, whose details can be found by clicking on 'books available for review' in the information on the Royal Statistical Society's Web site: http://www.rss.org.uk/main.asp?page=1977
Türklük Araştırmaları Dergisi • Journal of International Turkic Research (INTURE) , 2024
bioRxiv (Cold Spring Harbor Laboratory), 2024
Effect of Die Angle on Stress Distribution in Extrusion Process of Aluminum Rod, 2014
Clean Energy
Acta Sci. Pol. Formatio Circumiectus, 2024
LingUU 8, 2024
Specialistic Archaeological Research report 349, 2021
Practice in Clinical Psychology, 2013
Dilemata - Revista Internacional de éticas aplicadas, 2022
Arquivos Brasileiros de Cardiologia, 1999
Frontiers in Marine Science, 2021
International Journal of Industrial and Systems Engineering, 2016
The Journal of rheumatology, 2001
Psicologia: Teoria E Pesquisa, 2015
Biologicals, 2014
Related topics
- We're Hiring!
- Help Center
- Find new research papers in:
- Health Sciences
- Earth Sciences
- Cognitive Science
- Mathematics
- Computer Science
- Academia ©2024
COMMENTS
A proper data presentation includes the interpretation of that data, the reason why it's included, and why it matters to your research. ... After opening the PowerPoint presentation, they chose "SmartArt" to form the chart. The SmartArt Graphic window has a "Hierarchy" category on the left. Here, you will see multiple options.
Chapter 9 Data Analysis, Interpretation, and Presentation. Goals • Discuss the difference between qualitative and quantitative data and analysis • Enable you to analyze data gathered from: • Questionnaires • Interviews • Observation studies • Make you aware of software packages that are available to help your analysis • Identify common pitfalls in data analysis, interpretation ...
Goals Discuss the difference between qualitative and quantitative data and analysis Enable you to analyze data gathered from: Questionnaires Interviews Observation studies Make you aware of software packages that are available to help your analysis Identify common pitfalls in data analysis, interpretation, and presentation Enable you to interpret and present your findings in appropriate ways
CMC Introduction to Data Interpretation Workshop January 30, 2018 Tools for effective science communication Interpreting your data • Evaluating and analyzing your data in order to communicate it in a meaningful way with your selected audience ... DATA INTERPRETATIONS PPT CMC
Data analysis, interpretation and presentation. Data analysis, interpretation and presentation. Overview. Qualitative and quantitative Simple quantitative analysis Simple qualitative analysis Tools to support data analysis Theoretical frameworks: grounded theory, distributed cognition, activity theory. 205 views • 16 slides
2 Aims Discuss the difference between qualitative and quantitative data and analysis. Enable you to analyze data gathered from: -Questionnaires. -Interviews. -Observation studies. Make you aware of software packages that are available to help your analysis. Identify common pitfalls in data analysis, interpretation, and presentation.
analysis to use on a set of data and the relevant forms of pictorial presentation or data display. The decision is based on the scale of measurement of the data. These scales are nominal, ordinal and numerical. Nominal scale A nominal scale is where: the data can be classified into a non-numerical or named categories, and
Interesting business topics for presentations; Dec. 4, 2024. Biology topics for presentation: Explore fascinating insights; Nov. 18, 2024. AI prompt examples for creating impactful AI presentations; Latest posts
Data is interpreted in a descriptive form. This chapter comprises the analysis, presentation and interpretation of the findings resulting from this study. The analysis and interpretation of data is carried out in two phases. The first part, which is based on the results of the questionnaire, deals with a qualitative analysis of data.
After collection of data (primary or secondary), it is necessary to summarize them suitably and present in such forms as can facilitate subsequent analysis and interpretation. There are two major tools/techniques for presentation of data as follows:-Presentation in tabular form-Presentation in graphical form. 2.1 Tabular Presentation Data may ...